نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری جغرافیا و برنامه ریزی شهری، گروه جغرافیای انسانی، دانشکده جغرافیا، دانشگاه تهران، ایران.

2 استاد جغرافیا و برنامه‌ریزی شهری، گروه جغرافیای انسانی، دانشکده جغرافیا، دانشگاه تهران، ایران.

3 دانشیار جغرافیا و برنامه‌ریزی شهری، گروه جغرافیای انسانی، دانشکده جغرافیا، دانشگاه تهران، ایران.

4 دانشیار جغرافیا و برنامه‌ریزی روستایی، گروه جغرافیای انسانی، دانشکده جغرافیا، دانشگاه تهران، ایران.

10.34785/J011.2022.021

چکیده

عملیاتی کردن مفهوم تاب‌آوری در برابر بلایای شهری نقطه عطفی به منظور درک ویژگی‌هایی است که به تاب‌آوری شهرها در برابر مخاطرات طبیعی و تعاملات مورد نیاز برای ساخت و حفظ آن کمک می‌کند. درحالی‌که سنجش تاب‌آوری در برابر بلایای شهری اخیراً توجه زیادی را به خود جلب کرده، تاکنون رویکرد بهینه‌ای برای عملیاتی کردن این مفهوم به وجود نیامده است. بنابراین نیاز به انجام مطالعات تجربی بیشتری وجود دارد که چه چیزی تاب­آوری در برابر بلایا را تشکیل می­دهد و نحوه سنجش آن چگونه است. شهر خرم­آباد به دلیل قرار گرفتن در معرض رواناب­های سطحی جاری شده از کوه­های اطراف، آب‌گرفتگی‌ها، طغیان رودخانه­هایی که از مرکز شهر می­گذرند و ویژگی ذاتی مکان قرارگیری در دره­ای منحصربه­فرد، مستعد ریسک­های زیادی است. محققان پیش‌بینی می‌کنند که رویدادهای مرتبط با آب‌وهوا در آینده به دلیل تغییرات آب و هوایی، فراوانی و شدت آنها را افزایش می‌دهد. عواقب این رویدادها ( یعنی خسارات به زیرساخت‌ها و اموال ) و همچنین صدمات شخصی و تلفات جانی، احتمالاً افزایش خواهد یافت. در این پژوهش، سنجش تاب‌آوری بر ویژگی‌ها و ظرفیت­های ذاتی شهر خرم­آباد در زمینه وقوع سیلاب‌های ناگهانی از آب‌های سطحی یا ناشی از طغیان رودخانه‌ها متمرکز است. رویکرد اندازه‌گیری مبتنی بر ایجاد یک شاخص ترکیبی بر اساس شش بعد اجتماعی، اقتصادی، نهادی، زیرساختی، سرمایه اجتماعی و محیطی تاب‌آوری جامعه در برابر سیل است. این پژوهش با توسعه یک روش تصمیم­گیری چندمعیاره ترکیبی انجام گرفته است؛ مدل ترکیبی DANP برای اولویت­بندی شاخص­های انتخابی و مدل TOPSIS به‌منظور رتبه­بندی نواحی شهری خرم­آباد بر اساس سطوح تاب­آوری آنها استفاده شده است. بیشتر داده‌های ارائه‌شده برای شاخص‌ها عمدتاً از مرکز آمار ایران به‌عنوان مرجع منحصربه‌فرد آمار رسمی کشور به‌دست‌آمده است. سایر داده‌های موردنیاز از منابع اطلاعاتی در دسترس عموم شهرداری خرم­آباد، سازمان مدیریت و پیشگیری از بلایای طبیعی، نوسازی و تجهیز مدارس ایران و وزارت بهداشت، درمان و آموزش پزشکی ایران بازیابی شده است. نتایج نشان می‌دهد که ناحیه 23 تاب‌آورترین ناحیه در شهر خرم­آباد است، درحالی‌که نواحی 1، 4، 7، 13 و 17 دارای کمترین سطح تاب‌آوری هستند. چنین ارزیابی‌هایی مبتنی بر مکان فرصت و ابزاری برای ردیابی عملکرد جامعه در طول زمان را در اختیار تصمیم‌گیرندگان قرار می‌دهند تا تفکر تاب‌آوری را در توسعه شهری و برنامه‌ریزی شهری تاب‌آور ادغام نمایند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Measuring urban resilience against flood risk using composite indicators: a Case Study of Khorramabad city)

نویسندگان [English]

  • Yaghob Abdali 1
  • Saeed Zanganeh Shahraki 2
  • hossein hataminejad 3
  • Ahmad Pourahmad 2
  • Mohammd Salmani 4

1 Department of Human Geography, Faculty of Geography, University of Tehran, Iran.

2 Department of Human Geography, Faculty of Geography, University of Tehran, Iran.

3 Department of Human Geography, Faculty of Geography, University of Tehran, Iran.

4 Department of Human Geography, Faculty of Geography, University of Tehran, Iran.

چکیده [English]

Highlights:

Flooding is one of the most common, widespread, and devastating natural disasters.
Strengthening capacities to better prepare for, cope with, and recover from adverse effects is crucial for addressing increasing risks from natural events.
This article establishes a framework for building resilience in Khorramabad city.

 
Introduction:
Global climate changes, primarily manifested as global warming and rapid urbanization, exacerbate extreme weather events. Statistics indicate that floods are among the most prevalent and catastrophic natural disasters (Safiah Yusmah et al., 2020: 552). Urban floods caused by heavy rainfall have evolved from gradual accumulation to sudden surges (Masozera et al., 2007: 299; Hallegatte et al., 2013: 802). Therefore, urban flood resilience, crucial for flood control and disaster reduction, has garnered increasing research focus (Obrist et al., 2010: 284; Xu et al., 2018: 5298). The Sendai Framework for Disaster Risk Reduction (2015-2030), endorsed by the World Conference on Disaster Risk Reduction in 2015, and the 2018 Beijing Resilient City Development Plan, underscore the importance of enhancing urban resilience to disasters (Sun et al., 2022: 1).
To address the growing risk of natural events, it is essential to strengthen capacities that enable vulnerable communities to better prepare for, cope with, and recover from adverse effects. In disaster management literature, this strategy is commonly referred to as resilience. Resilience, when applied to communities, is defined as "the ability of a community to prepare for, plan, absorb, recover, and adapt to actual or potential adverse events in a timely and efficient manner, including rebuilding and improving essential functions and structures." A resilient community incurs fewer losses and recovers more swiftly from hazardous events (Cutter et al., 2014: 65; Abdali et al., 2022: 6).
Theoretical Framework:
The concept of resilience originated from Holling's seminal work in ecology, aimed at understanding the instability and dynamics of nature. According to Holling, resilience is "the measure of a system's ability to absorb change and disturbance while maintaining the same relationships between populations or state variables." However, resilience is not simply "the ability of a system to return to equilibrium after a temporary disturbance" (Holling, 1973: 14-17). In ecological literature, two definitions of resilience emerged: one that encompasses continuity, change, and unpredictability in a nonlinear and non-equilibrium system (ecological resilience), and another that focuses on efficiency, stability, and predictability in a single equilibrium system (engineering resilience) (Holling, 1996: 25; Folke, 2006: 256). Engineering resilience emphasizes rapid and efficient recovery post-disturbance, while ecological resilience is about absorbing changes and ensuring continuity (Pickett et al., 2004: 373).
Methodology:
This study employs a combined multi-criteria decision-making approach using the Analytic Network Process (ANP), DEMATEL technique, and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE). The DEMATEL-ANP model identifies internal relationships between indicators, allowing for pairwise comparisons and weight evaluation, while PROMETHEE ranks solutions based on their proximity to the ideal solution, with the best solution being closest to the ideal point (Chen et al., 2011: 909; Chiu et al., 2013: 49; Thor et al., 2013: 27; Ju et al., 2015: 348-349).
Results and Discussion:
Resilience in Khorramabad exhibits a clear spatial pattern, with higher resilience in affluent upper city areas and lower resilience in less affluent lower city areas. This disparity highlights the inequitable distribution of urban facilities and services, emphasizing the need for equitable development and access to vital resources. Economic resilience is surprisingly lower in the city’s economic center due to deteriorated infrastructure and the residence of lower socio-economic strata. Institutional resilience is higher in central areas, benefiting from the concentration of governmental, private, and grassroots organizations.
Peripheral areas suffer from inadequate infrastructure, resulting in lower overall resilience. Social capital resilience lacks a specific spatial pattern, with most areas rated as medium to low, indicating weak community connections. Environmental resilience shows that city center areas are more prone to flooding, while higher resilience is observed in different parts of the city, possibly due to land permeability and river positions.
Comparative analysis reveals that regions 1, 4, 7, 13, and 17 have the lowest resilience, while regions 23 and 14 rank high. This analysis provides a comprehensive understanding of resilience levels at the city scale, identifying areas requiring further intervention.
Conclusion:
Mapping the results reveals distinct spatial patterns of resilience and identifies hotspots needing more intervention. Central and western regions, with lower resilience, require more attention. Environmental and infrastructural factors are key, directly relating to land use and planning. The findings can assist Khorramabad’s urban planning organizations in integrating disaster resilience into urban planning, transforming reactive plans into proactive adaptation strategies. Additionally, identifying potential hotspots can aid emergency management institutions in effective disaster risk management. Enhancing social resilience is crucial for community capacity building to prepare for, respond to, and adapt to climate change impacts, guiding local stakeholders in fostering fair development and equitable resource access.

کلیدواژه‌ها [English]

  • Urban flood resilience
  • Composite indicator
  • DANP
  • TOPSIS
  • Khorramabad
Abdali, Y., Hataminejad, H., Zanganeh Shahraki, S., Pourahmad, A., & Salmani, M. (2023). Providing future scenarios of urban resilience against flood hazard (Case study: Khorramabad city). Journal of Geographical Studies of Mountainous Areas4(16), 153-174. doi: 10.5254/gsma.4.4.153 [in Persian]
Abdali, Y., Hataminejad, H., Zanganeh Shahraki, S., Pourahmad, A., & Salmani, M. (2022). Analysis of Urban Resilience Indicators against Flood Risk with a Futuristic Approach (A Case Study of Khorramabad). Journal of Iran Futures Studies7(1), 1-26. doi: 10.30479/jfs.2022.16142.1327 [in Persian]
Afzali, M., Abdali, Y., & Heydari, A. (2021). Physical-Spatial Analysis of Khorramabad City Using Urban Intelligence Growth Indices. Research and Urban Planning, 11(43), 35-50. Doi: 20.1001.1.22285229.1399.11.43.3.6 [in Persian]
Asadzadeh, A., Kötter, T., & Zebardast, E. (2015). An augmented approach for measurement of disaster resilience using connective factor analysis and analytic network process (F’ANP) model. International Journal of Disaster Risk Reduction14, 504-518. doi.org/10.1016/j.ijdrr.2015.10.002
Asadzadeh, A., Kötter, T., Salehi, P., & Birkmann, J. (2017). Operationalizing a concept: The systematic review of composite indicator building for measuring community disaster resilience. International journal of disaster risk reduction25, 147-162. doi.org/10.1016/j.ijdrr.2017.09.015.
Béné, C. (2013). Towards a quantifiable measure of resilience. IDS Working Papers2013(434), 1-27. doi.org/10.1111/j.2040-0209.2013.00434.x
Burton, C. G. (2012). The Development of Metrics for Community Resilience to Natural Disasters. Diss. University of South Carolina. doi.org/10.1007/s13398-014-0173-7.2
Burton, C. G. (2015). A validation of metrics for community resilience to natural hazards and disasters using the recovery from Hurricane Katrina as a case study. Annals of the Association of American Geographers105(1), 67-86. doi.org/10.1080/00045608.2014.960039
Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. International journal of production economics182, 435-448. doi.org/10.1016/j.ijpe.2016.09.015
Chen, F. H., Hsu, T. S., & Tzeng, G. H. (2011). A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP. International Journal of Hospitality Management30(4), 908-932. doi.org/10.1016/j.ijhm.2011.02.001
Chen, J. K., & Chen, I. S. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications37(3), 1981-1990. doi.org/10.1016/j.eswa.2009.06.079
Chiu, W. Y., Tzeng, G. H., & Li, H. L. (2013). A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Knowledge-Based Systems37, 48-61. doi.org/10.1016/j.knosys.2012.06.017
Cumming, G. S., Barnes, G., Perz, S., Schmink, M., Sieving, K. E., Southworth, J., ... & Van Holt, T. (2005). An exploratory framework for the empirical measurement of resilience. Ecosystems8(8), 975-987. doi.org/10.1007/s10021-005-0129-z
Cutter, S. L. (2016). The landscape of disaster resilience indicators in the USA. Natural hazards80(2), 741-758. doi.org/10.1007/s11069-015-1993-2
Cutter, S. L., Ash, K. D., & Emrich, C. T. (2014). The geographies of community disaster resilience. Global environmental change29, 65-77. doi.org/10.1016/j.gloenvcha.2014.08.005
Cutter, S. L., Ash, K. D., & Emrich, C. T. (2016). Urban–rural differences in disaster resilience. Annals of the American Association of Geographers106(6), 1236-1252. doi.org/10.1080/24694452.2016.1194740
Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606. doi.org/10.1016/j.gloenvcha.2008.07.013
Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster resilience indicators for benchmarking baseline conditions. Journal of homeland security and emergency management7(1). doi.org/10.2202/1547-7355.1732
Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global environmental change16(3), 253-267. doi.org/10.1016/j.gloenvcha.2006.04.002
Frazier, T. G., Thompson, C. M., Dezzani, R. J., & Butsick, D. (2013). Spatial and temporal quantification of resilience at the community scale. Applied Geography42, 95-107. doi.org/10.1016/j.apgeog.2013.05.004
Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal cities. Nature climate change3(9), 802-806. doi.org/10.1038/nclimate1979
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 1-23. doi.org/10.1146/annurev.es.04.110173.000245
Holling, C. S. (1996). Engineering resilience versus ecological resilience. Engineering within ecological constraints31(1996), 32.
Hwang, C. L., Yoon, K., Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191. doi.org/10.1007/978-3-642-48318-9_3
International Federation of Red Cross and Red Crescent Societies. (2016). World disasters report 2016–Resilience: Saving lives today, investing for tomorrow.
Ju, Y., Wang, A., & You, T. (2015). Emergency alternative evaluation and selection based on ANP, DEMATEL, and TL-TOPSIS. Natural Hazards75(2), 347-379. doi.org/10.1007/s11069-014-1077-8
Kwak, Y., Deal, B., & Mosey, G. (2021). Landscape design toward urban resilience: Bridging science and physical design coupling sociohydrological modeling and design process. Sustainability13(9), 4666. doi.org/10.3390/su13094666
Masozera, M., Bailey, M., & Kerchner, C. (2007). Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecological economics63(2-3), 299-306. doi.org/10.1016/j.ecolecon.2006.06.013
Mayunga, J. S. (2009). Measuring the measure: A multi-dimensional scale model to measure community disaster resilience in the US Gulf Coast region. Texas A&M University.
Moghadas, M., Asadzadeh, A., Vafeidis, A., Fekete, A., & Kötter, T. (2019). A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. International journal of disaster risk reduction35, 101069. doi.org/10.1016/j.ijdrr.2019.101069
Movahed, S., & Tabibian, M. (2020). Proposing a framework for city’s ecological resilience pattern. Motaleate Shahri9(33), 109-126. doi: 10.34785/J011.2019.865 [in Persian]
Obrist, B., Pfeiffer, C., & Henley, R. (2010). Multi‐layered social resilience: a new approach in mitigation research. Progress in Development Studies, 10(4), 283-293. doi.org/10.1177/146499340901000402
Pai, F. Y. (2014). Analyzing consumers' decisions to select micro-invasive aesthetic service providers using a hybrid method. Applied Mathematics & Information Sciences8(6), 3071-3083. doi.org/10.12785/amis/080648
Pickett, S. T., Cadenasso, M. L., & Grove, J. M. (2004). Resilient cities: meaning, models, and metaphor for integrating the ecological, socio-economic, and planning realms. Landscape and urban planning69(4), 369-384. doi.org/10.1016/j.landurbplan.2003.10.035
PWC. (2013). World in 2050. Long-Term Growth Projections. PWC.
Renschler, C. S., Frazier, A. E., Arendt, L. A., Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Developing the ‘PEOPLES’resilience framework for defining and measuring disaster resilience at the community scale. In Proceedings of the 9th US national and 10th Canadian conference on earthquake engineering (pp. 25-29). Canada Toronto. doi. 10.13140/RG.2.1.1563.4323
Safiah Yusmah, M. Y., Bracken, L. J., Sahdan, Z., Norhaslina, H., Melasutra, M. D., Ghaffarianhoseini, A., ... & Shereen Farisha, A. S. (2020). Understanding urban flood vulnerability and resilience: a case study of Kuantan, Pahang, Malaysia. Natural Hazards101(2), 551-571. doi.org/10.1007/s11069-020-03885-1
Scherzer, S., Lujala, P., & Rød, J. K. (2019). A community resilience index for Norway: An adaptation of the Baseline Resilience Indicators for Communities (BRIC). International Journal of Disaster Risk Reduction36, 101107. doi.org/10.1016/j.ijdrr.2019.101107
Sharifi, A. (2016). A critical review of selected tools for assessing community resilience. Ecological indicators69, 629-647. doi.org/10.1016/j.ecolind.2016.05.023
Singh-Peterson, L., Salmon, P., Goode, N., & Gallina, J. (2014). Translation and evaluation of the baseline resilience indicators for communities on the Sunshine Coast, Queensland Australia. International journal of disaster risk reduction10, 116-126. doi.org/10.1016/j.ijdrr.2014.07.004
Spett, E. J. (2021). After the Flood: Exploring the Influence of Risk Perception and Decision Criteria Preference on Flood Mitigation in the Lake Champlain Richelieu River Basin. The University of Vermont and State Agricultural College.
Statistical Centre of Iran. (2016). Selected Findings of the 2016 National Population and Housing Census (NPHC) [in Persian]
Sun, R., Shi, S., Reheman, Y., & Li, S. (2022). Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. International Journal of Disaster Risk Reduction82, 103344. doi.org/10.1016/j.ijdrr.2022.103344
Thor, J., Ding, S. H., & Kamaruddin, S. (2013). Comparison of multi criteria decision making methods from the maintenance alternative selection perspective. The International Journal of Engineering and Science2(6), 27-34.
Weichselgartner, J., & Kelman, I. (2015). Geographies of resilience: Challenges and opportunities of a descriptive concept. Progress in human geography39(3), 249-267. doi.org/10.1177/0309132513518834
Xu, Y. Y., Li, G., Cui, S. H., Xu, Y., Pan, J., Tong, N., & Zhu, Y. (2018). Review and perspective on resilience science: From ecological theory to urban practice. Acta Ecologica Sinica38(15), 5297-5304.