نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.

2 استاد گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.

10.22034/urbs.2024.140477.5005

چکیده

با توجه به تغییرات اقلیمی و همچنین توسعه های شهری بدون توجه به کیفیت زیست محیطی، شکل­گیری جزیره گرمای شهری به یکی از چالش­های جدی عصر حاضر تبدیل شده است. هدف عمده این پژوهش، تحلیل وضعیت پوشش گیاهی و دمای سطح زمین برای بررسی شکل گیری جزایر حرارتی شهری در شهر کرج است. به این منظور و در راستای آشکارسازی تأثیر فضاهای سبز در محیط­های حرارتی شهر کرج، از داده­های سنجش از دور برای استخراج فضاهای سبز، دمای سطح زمین و پوشش زمین استفاده شده است. دمای سطح زمین با استفاده از تصاویر مودیس محاسبه شد. تغییرات پوشش گیاهی با استفاده از اطلاعات برداشت شده توسط سنجنده­های مربوطه ماهواره لندست 7 و 8  مربوط به سال های 2001 و 2021 استخراج شده و بعد از اعمال تصحیحات لازم و بررسی تصاویر، اقدام به شناسایی تغییرات کاربری اراضی و نوع تغییرات آن گردید. نتایج بررسی­ها نشان داد که اراضی بایر پیرامون شهر به صورت پیوسته دارای بالاترین دما و لکه های گرم هستند و محدوده­های دمایی بسیار گرم را تشکیل می­دهند. در محدوده­ مسکونی شهر نیز جزایر حرارتی بر بافت فرسوده و محدوده های متراکم منطبق است. همچنین تحلیل و بررسی نقشه­های دمای سطح زمین نشان­دهنده­ افزایش دمای سطح در شهر کرج است. درعین حال، واکاوی نقشه­ها حکایت از رابطه­ قوی بین پوشش گیاهی و دمای سطح زمین در کلانشهر کرج دارد. نقشه­های کاربری اراضی نیز نشان از کاهش مساحت پوشش­گیاهی و افزایش کاربری انسان ساخت دارد. این موضوع به طور واضح نشان­دهنده­ این است که مهم ترین عامل در گسترش جزایر گرمایی و افزایش دما در بازه­ زمانی مورد بررسی، کمبود پوشش­گیاهی بوده است. در نتیجه فضاهای سبز و پوشش گیاهی در شهرها به طور چشمگیری سبب تعدیل جزایر حرارتی شهری هستند. به این صورت که نواحی همچون اراضی بایر و نواحی دارای پوشش گیاهی کمتر، دارای دمای بیشتری نیز هستند. بنابراین گسترش بام سبز و استفاده از پوشش گیاهی سازگار با اقلیم هر منطقه به عنوان راه حلی برای کاهش جزیره گرمایی پیشنهاد می­شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The impact of vegetation on urban heat island reduction in the city of Karaj

نویسندگان [English]

  • fatemeh ghorbanileylestani, 1
  • Hassan sajadzadeh 2

1 Department of Urbanism, Faculty of Art & Architecture, Bu-Ali Sina University, Hamedan, Iran.

2 Department of Urbanism, Faculty of Art & Architecture, Bu-Ali Sina University, Hamedan, Iran.

چکیده [English]

Highlights

Comprehensive Analysis: This study investigates the Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) over two decades (2000-2021) in Karaj, highlighting key trends.
Correlation Between Vegetation and Temperature: NDVI shows a strong negative correlation with LST, indicating vegetation’s cooling impact.
Built-Up Areas vs. Green Spaces: High-density urban areas exhibit elevated temperatures, while regions with dense vegetation are noticeably cooler.
Key Findings: The primary drivers behind Karaj’s Urban Heat Island (UHI) effect are the reduction of green spaces and the rise in urban land use.

 
Introduction
With rapid population growth, urbanization is transforming landscapes, often at the expense of natural green areas. Cities are expanding at unprecedented rates, bringing changes in land use, infrastructure, and building density. Natural permeable surfaces, such as vegetation and open spaces, are replaced by impermeable concrete structures that absorb and retain heat, leading to urban microclimate shifts.
This transformation has profound environmental impacts. One of the most concerning consequences is the Urban Heat Island (UHI) effect, where urban areas exhibit higher temperatures compared to their rural counterparts. The UHI effect intensifies as cities grow, impacting energy consumption, air quality, and public health. In this context, reducing UHI has become a priority for sustainable urban planning. Cooling strategies—especially the integration of vegetation—are essential to enhance urban resilience, adapt to climate change, and improve quality of life for city dwellers.
Materials and Methods
Remote sensing technology was used in this study as a powerful tool for analyzing urban temperature dynamics and land-use changes. Using Landsat satellite images from 2001 to 2021, we examined LST and NDVI for Karaj. Landsat imagery, with a resolution of 30 meters, was sourced from the USGS database. To ensure consistency, cloud-free images were selected from warm-season months for each year.
Data processing involved the extraction of LST and NDVI values for Karaj’s administrative boundaries. The satellite images were preprocessed, and land-use classification was carried out using the maximum likelihood approach, categorizing land into three classes: built-up areas, vegetation, and barren land. This classification provided a foundation for assessing the relationship between LST and vegetation cover.
Through correlation and regression tree models, we analyzed the interplay between LST and NDVI. By examining changes in both indices, we aimed to understand vegetation’s role in moderating urban heat in Karaj. Our two main objectives were to (1) assess LST and NDVI variations over time, and (2) explore their interdependencies to determine vegetation's influence on UHI.
Discussion of Results
The analysis reveals a clear trend of rising temperatures across Karaj over the study period. This temperature increase is strongly associated with urban expansion and the decline of natural vegetation. Our findings highlight that land-use type significantly influences LST, with barren and built-up areas having markedly higher temperatures.
Central Karaj, a dense urban area with heavy infrastructure and traffic, recorded the highest surface temperatures. These “hot spots” are concentrated around industrial areas, transportation hubs (airports, metro stations, highways), and zones with minimal vegetation. In contrast, areas with vegetation, such as parks and green belts, exhibited substantially cooler surface temperatures. This difference underscores vegetation’s role in absorbing less heat and promoting natural cooling.
The spatial distribution of LST shows the hottest zones in arid lands surrounding the city and densely built-up urban areas. The NDVI data further supports this observation; as NDVI values increase, LST values decline, illustrating a negative correlation between vegetation density and surface temperature. The correlation analysis reveals that regions with higher NDVI values, particularly in the eastern and northeastern parts of Karaj, experienced significantly lower temperatures.
The land-use maps demonstrate a significant reduction in barren and vegetated areas, accompanied by an increase in urbanized land. These patterns point to a direct relationship between declining vegetation and rising temperatures, reinforcing the critical need for green spaces in Karaj to mitigate UHI effects. Vegetation, as indicated by NDVI, plays a significant role in temperature regulation, with green areas acting as cooling zones in an increasingly built-up landscape.
Conclusions
This study underscores the pivotal role of vegetation in controlling urban temperatures in Karaj. Through detailed LST and NDVI analyses, the results confirm that vegetation coverage is inversely related to LST, with green spaces helping to mitigate the UHI effect. In contrast, barren lands and dense built-up areas contribute significantly to higher temperatures, highlighting the thermal impact of urban development without adequate vegetation.
To address the UHI issue, urban planners and policymakers should prioritize sustainable solutions such as increasing green spaces, incorporating green roofs, and developing urban vegetation initiatives tailored to Karaj’s climate. These approaches not only lower urban temperatures but also enhance the city’s environmental resilience, support biodiversity, and improve the overall quality of urban life.
Based on the findings, Karaj’s urban planning efforts should focus on preserving existing vegetation and expanding green infrastructure. Effective land-use policies that integrate vegetation can help counteract the adverse effects of rising temperatures, contributing to a more sustainable and livable urban environment.

کلیدواژه‌ها [English]

  • Urban Heat Island
  • vegetation
  • satellite imagery
  • Karaj
  • land surface temperature
Abdi, k., & Kamiabi, S., & Zand Moghadam, m. (2021). An Investigation into the Role of Urban Green Space Vegetation on the Temperature Changes Trend of the Urban Environments Area (Case Study: Sari City). Journal of Environmental Science and Technology, 23(2 (105)), 135-146. https://doi.org/10.30495/jest.2021.38883.4423 [in Persian]
Aflaki, A., & Mirnezhad, M., & Ghaffarianhoseini, A., & Ghaffarianhoseini, A., & Omrany, H., & Wang, Z.-H., & Akbari, H. (2017). Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131-145. https://doi.org/10.1016/j.cities.2016.09.003
akbari, D., Moradizadeh, M., & Akbari, M. (2020). Land Use Changes and Urban Development Simulation Using Neural Network and Markov Chain Cellular Automata. Research and Urban Planning, 10(39), 157-170. https://jupm.marvdasht.iau.ir/author.index?vol=0&vl=All%20Volumes%20&lang=en [in Persian]
Al-Saadi, L.M., & Jaber, S.H., & Al-Jiboori. M.H. (2020). Variation of urban vegetation cover and its impact on minimum, and maximum heat islands, Urban Climate. https://doi.org/10.1016/j.uclim.2020.100707
Asadi, S., & Sharghi, A. (2018). climate resilience, the future challenge of Iranian architecture. Conference: international conference on civil engineering, architecture and urban management in Iran, Iran. https://www.researchgate.net/publication/328007276_climate_resilience_the_future_challenge_of_Iranian_architecture [in Persian]
Asadi, Y., & Hamzeh, S., & Kiavarz, M. (2020). Investigate the effects of land Use and vegetation on urban heat islands using landscape measurements (Case Study: region 6 of Tehran). H uman Geography Research Quarterly, 52(2), 759-773. https://doi.org/10.22059/jhgr.2020.290775.1008022 [in Persian]
Asghari, S., & Emami, H. (2019). Monitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image. Journal of Applied researches in Geographical Sciences, 19(53),195-215. https://doi.org/10.29252/jgs.19.53.195 [In Persian]
Bhargava, A., Lakmini, S., & Bhargava, S. (2017). Urban heat island effect: It’s relevance in urban planning. J. Biodivers. Endanger. Species, 5(187), 2020.‏ https://doi.org/10.4172/2332-2543.1000187
Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007
Colunga, M. L., Cambrón-Sandoval, V. H., Suzán-Azpiri, H., Guevara-Escobar, A., & Luna-Soria, H. (2015). The role of urban vegetation in temperature and heat island effects in Querétaro city, Mexico. Atmósfera, 28(3), 205-218.‏ https://doi.org/10.20937/ATM.2015.28.03.05
Dehghan‏, M. (2003). Urban Heat Islands, an example of climate change, Journal: Growth of Geography Education, 65, 28-35. https://ensani.ir/fa/article/146765/جزایر-گرمایی-شهری-نمونه-ای-از-تغییر-اقلیم [in Persian]
Deilami, K., Kamruzzaman, M., & Hayes, J. F. (2016). Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia. Remote Sensing, 8(9), 716.‏ https://doi.org/10.3390/rs8090716
Duncan, J. M. A., Boruff, B., Saunders, A., Sun, Q., Hurley, J., & Amati, M. (2019). Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, 656, 118-128.‏ https://doi.org/10.1016/j.scitotenv.2018.11.223
Gohain, K. J., Mohammad, P., & Goswami, A. (2021). Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International, 575, 259-269.‏. https://doi.org/10.1016/j.quaint.2020.04.052
Grover, A., & Singh, R. B. (2015). Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): A comparative study of Delhi and Mumbai. Environments, 2(2), 125-138.‏ https://doi.org/10.3390/environments2020125
Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667-678.‏ https://doi.org/10.1080/22797254.2018.1474494
Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1-10.‏ https://doi.org/10.1016/j.landurbplan.2014.11.007
Hejazi, R., & Abadi, P. (2002). The Effect of Plants on Ambient Temprature (Case Study: Taleghani Park). Journal of Environmental Science and Technology, 4(12), 45-83. https://www.sid.ir/en/journal/ViewPaper.aspx?id=109234
Jabbar, M., & Yusoff, M. M. (2022). Assessing the spatiotemporal urban green cover changes and their impact on land surface temperature and urban heat island in Lahore (Pakistan). Geography, Environment, Sustainability, 15(1), 130-140.‏http:// doi.org/10.24057/2071-9388-2021-005
Jamei, Y., Rajagopalan, P., & Sun, Q. C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of the total environment, 659, 1335-1351.‏ https://doi.org/10.1016/j.scitotenv.2018.12.308
Jumari, N. A. S. K., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., ... & Elshafie, A. (2023). Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8).‏ https://doi.org/10.1016/j.heliyon.2023.e18424
Karimi, A., Mohammad, P., Gachkar, S., Gachkar, D., García-Martínez, A., Moreno-Rangel, D., & Brown, R. D. (2021). Surface urban heat island assessment of a cold desert city: a case study over the Isfahan Metropolitan Area of Iran. Atmosphere, 12(10), 1368.‏ https://doi.org/10.3390/atmos12101368
Karimi, A., Mohammad, P., García-Martínez, A., Moreno-Rangel, D., Gachkar, D., & Gachkar, S. (2023). New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 25(10), 10485-10531. https://doi.org/10.1007/s10668-022-02530-0
Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670-1684.‏ https://doi.org/10.1016/j.egyr.2020.06.015
Karimi Zarchi, A., & Shahhoseini, R. (2019). Measuring the Intensity of the Surface Urban Heat Islands Using Vegetation and Urban Indices(Case Study: The Cities of Rasht and Langroud). Geographical Data, 28(110), 91-106. https://doi.org/10.22131/sepehr.2019.36614 [in Persian]
Keerthi Naidu, B. N., & Chundeli, F. A. (2023). Assessing LULC changes and LST through NDVI and NDBI spatial indicators: A case of Bengaluru, India. GeoJournal, 88(4), 4335-4350.‏ http:// doi.org/10.1007/s10708-023-10862-1
Lemonsu, A., Viguie, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586-605.‏ https://doi.org/10.1016/j.uclim.2015.10.007
Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote sensing of environment, 115(12), 3249-3263.‏ https://doi.org/10.1016/j.rse.2011.07.008
Lin, M., Hou, L., Qi, Z., & Wan, L. (2022). Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecological Indicators, 142, 109164.‏ https://doi.org/10.1016/j.ecolind.2022.109164
Majnouni-Toutakhane, A., & Ramazani, M. E. (2019). Investigation and evaluation of thermal island status of Tehran metropolis, using satellite imagery. Journal of Natural Environment, 72(1), 29-43.‏https://doi.org/ 10.22059/JNE.2018.253756.1491
Masoodian, S., & Montazeri, M. (2020). Tempo-spatial behavior of Surface Urban Heat Island of Isfahan Metropolitan Area. Journal of Natural Environmental Hazards, 9(24), 35-46. https://doi.org/10.22111/jneh.2019.28437.1493
Mazidi, A., Omidvar, C., Mozafari, G. A., & Taghizadeh, Z. (2019). Revealing the Changes in Esfahan Heat Island Considering Urban Development. The Journal of Geographical Research on Desert Areas, 7(1), 21-39.‏ https://doi.org/ 20.1001.1.2345332.1398.7.1.2.0
Mohammad, P., & Goswami, A. (2021). Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GIScience & Remote Sensing, 58(7), 955-981.‏https://doi.org/10.1080/15481603.2021.1940739
Niliyeh Brojeni, M., & Ahmadi Nadoushan, M. (2019). The relationship between urban vegetation and land surface temperature in Isfahan city using Landsat TM and OLI satellite images and LST index. Environmental Sciences, 17(4), 163-178.‏ https://doi.org/10.29252/envs.17.4.163 [in Persian]
Njoku, E. A., & Tenenbaum, D. E. (2022). Quantitative assessment of the relationship between land use/land cover (LULC), topographic elevation and land surface temperature (LST) in Ilorin, Nigeria. Remote Sensing Applications: Society and Environment, 27, 100780.‏ https://doi.org/10.1016/j.rsase.2022.100780
Nse, O. U., Okolie, C. J., & Nse, V. O. (2020). Dynamics of land cover, land surface temperature and NDVI in Uyo City, Nigeria. Scientific African, 10, e00599.‏ https://doi.org/10.1016/j.sciaf.2020.e00599
Pohan, S. A., & Sulistiyono, N. (2023). Analysis of the relationship between urban heat island (UHI) phenomenon and land cover change in Medan city using Landsat satellite imagery. In Journal of Physics: Conference Series (Vol. 2421, No. 1, p. 012017). IOP Publishing.‏ https://doi.org/10.1088/1742-6596/2421/1/012017
Prohmdirek, T., Chunpang, P., & Laosuwan, T. (2020). The relationship between normalized difference vegetation index and canopy temperature that affects the urban heat island phenomenon. Geographia Technica, 15(2), 222-234.‏ http://doi.org/10.21163/GT_2020.152.21
Rahaman, Z. A., Kafy, A. A., Saha, M., Rahim, A. A., Almulhim, A. I., Rahaman, S. N., ... & Al Rakib, A. (2022). Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Building and Environment, 222, 109335.‏ https://doi.org/10.1016/j.buildenv.2022.109335
Rajeshwari, A., & Mani, N. D. (2014). Estimation of land surface temperature of Dindigul district using Landsat 8 data. International journal of research in engineering and technology, 3(5), 122-126.‏ http://doi.org/10.15623/ijret.2014.0305025
Ramezani, S., & Naghibi, F. (2020). Investigation of the vegetation index changes in the formation of the urban heat islands (Case study: Urmia city). Research and Urban Planning, 11(42), 195-206. https://jupm.marvdasht.iau.ir/article_3944.html?lang=en [in Persian]
Ridha, S. (2017). Urban heat Island mitigation strategies in an arid climate. In outdoor thermal comfort reacheable, INSA de Toulouse. sensing of environment, Vol. 113, No. 5, pp. 893-903. https://theses.hal.science/tel-01596559/
Rizvi, S. H., Fatima, H., Iqbal, M. J., & Alam, K. (2020). The effect of urbanization on the intensification of SUHIs: Analysis by LULC on Karachi. Journal of Atmospheric and Solar-Terrestrial Physics, 207, 105374.‏ https://doi.org/10.1016/j.jastp.2020.105374
Sadeghinia, A., Alijani, B., & Zeaieanfirouzabadi, P. (2013). Analysis of spatial-temporal structure of the urban heat island in Tehran through remote sensing and geographical information system. Journal of Geography and Environmental hazards, 1(4), 1-17.‏https://doi.org/10.22067/geo.v1i4.16950 [in Persian]
Santhosh, L. G., & Shilpa, D. N. (2023). Assessment of LULC change dynamics and its relationship with LST and spectral indices in a rural area of Bengaluru district, Karnataka India. Remote Sensing Applications: Society and Environment, 29, 100886.‏ https://doi.org/10.1016/j.rsase.2022.100886
Senanayake, I. P., Welivitiya, W. D. D. P., & Nadeeka, P. M. (2013). Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Climate, 5, 19-35. https://doi.org/10.1016/j.uclim.2013.07.004
Shahfahad, Talukdar, S., Rihan, M., Hang, H. T., Bhaskaran, S., & Rahman, A. (2021). Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environment, Development and Sustainability, 1-29.‏ https:// doi.org/10.1007/s10668-021-01587-7
Shamsipour, A., Azizi, G., Karimi Ahmadabad, M., & Moghbel, M. (2013). Assessing the Physical Surface Temperature Patterns in Urban Environment (Case Study: Tehran). Geography and Environmental Sustainability, 3(1), 67-86.‏ https://ges.razi.ac.ir/?_action=articleInfo&article=207&lang=fa&lang=en [in Persian]
Shamsipour, A., & Mahdian Mahforouzi, M., & Akhavan, H., & Hoseinpour, Z. (2013). An Analysis on Diurnal Actions of the Urban Heat Island of Tehran. Journal of Environmental Studies, 38 (4), 45-56. https://doi.org/10.22059/jes.2013.29862
Shen, Z., Xu, X., Sun, Z., Jiang, Y., & Shi, H. (2023). Regional thermal environments (RTEs) and driving forces in six urban agglomerations of China and America. Building and Environment, 235, 110185.‏ https://doi.org/10.1016/j.buildenv.2023.110185
Shirgir, E., Kheyroddin, R., & Behzadfar, M. (2022). Developing a pattern for intervention in urban green infrastructures to reach urban ecological resilience to climate change (Case study: Yousef Abad neighborhood in Tehran). Journal of Environmental Studies, 45(3), 545-565.‏ https://doi.org/10.22059/jes.2020.290829.1007933 [in Persian]
Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable cities and society, 32, 100-114.‏ https://doi.org/10.1016/j.scs.2017.02.018
Singh, R. B., & Grover, A. (2015). Spatial correlations of changing land use, surface temperature (UHI) and NDVI in Delhi using Landsat satellite images. Urban development challenges, risks and resilience in Asian mega cities, 83-97.‏ http://doi.org/10.1007/978-4-431-55043-3_5
Stache, E. E., Schilperoort, B. B., Ottelé, M. M., & Jonkers, H. H. (2022). Comparative analysis in thermal behaviour of common urban building materials and vegetation and consequences for urban heat island effect. Building and Environment, 213, 108489.‏ https://doi.org/10.1016/j.buildenv.2021.108489
Ullah, W., Ahmad, K., Ullah, S., Tahir, A. A., Javed, M. F., Nazir, A., ... & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2).‏ http://doi.org/10.1016/j.heliyon.2023.e13322
Vaez Mousavi A., Mokhtarzadeh M. (2015). Estimation of land surface temperature using MODIS data. In: Gheragozlo A.: Geomatics 94 National Conference & Exhibition, Tehran, May 17, 2015: 1–9. https://www.sid.ir/paper/892070/fa [in Persian]
Yadav, A., Kumar, R., & Swarup, S. (2023). Remote Sensing Image-Based Analysis of the Urban Heat Island Effect in Relation to the Normalized Difference Vegetation Index (NDVI): A Case Study of Patna Municipal Corporation. Int. J. Res. Appl. Sci. Eng. Technol.(IJRASET), 11(1), 1143-1155.‏ https://doi.org/10.22214/ijraset.2023.48777
Yan, Z., Li, Z., Li, P., Zhao, C., Xu, Y., Cui, Z., & Sun, H. (2023). Spatial and temporal variation of NDVI and its driving factors based on geographical detector: a case study of Guanzhong plain urban agglomeration. Remote Sensing Applications: Society and Environment, 32, 101030.‏ https://doi.org/10.1016/j.rsase.2023.101030
Yao, R., Wang, L., Gui, X., Zheng, Y., Zhang, H., & Huang, X. (2017). Urbanization effects on vegetation and surface urban heat islands in China’s Yangtze River Basin. Remote Sensing, 9(6), 540.‏ https://doi.org/10.3390/rs9060540
Yao, R., Wang, L., Huang, X., Liu, Y., Niu, Z., Wang, S., & Wang, L. (2021). Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Science of the Total Environment, 772, 145607.‏ https://doi.org/10.1016/j.scitotenv.2021.145607
Yoo, S. (2018). Investigating important urban characteristics in the formation of urban heat islands: A machine learning approach. Journal of Big Data, 5(1), 2.‏ https:// doi.org /10.1186/s40537-018-0113-z
Zargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643.‏ https://doi.org/10.1038/s41598-023-50757-2
Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Scientific reports, 7(1), 4791.‏ https://doi.org/10.1038/s41598-017-04242-2
Zhou, D., Zhang, L., Li, D., Huang, D., & Zhu, C. (2016). Climate–vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environmental Research Letters, 11(7), 074009.‏ https://doi.org/10.1088/1748-9326/11/7/074009
Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape ecology, 29, 153-167.‏ http://doi.org/10.1007/s10980-013-9950-5