نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه معماری، دانشکده هنر و معماری، دانشگاه کردستان، سنندج، ایران.

2 استادیار، گروه مهندسی معماری، دانشکده هنر و معماری، دانشگاه کردستان، سنندج، ایران.

10.22034/urbs.2024.140353.4999

چکیده

توسعه شهرنشینی چالش‌های زیست‌محیطی بزرگی از جمله انتشارات گازهای مضر را به همراه داشته است. این امر با افزایش دما و تراکم شهری به اوج خود رسیده است. یکی از مهم‌ترین چالش ها جزیره گرمایی شهری (UHI) است که در مناطق شهری پرجمعیت به‌طور برجسته‌تر ظاهر می‌شود. در میان اجزای تشکیل‌دهنده مورفولوژی شهری، پهنه‌های آبی مانند رودخانه‌ها و دریاچه‌ها تأثیر قابل‌توجهی بر خنک‌کنندگی شهری دارند. به دلیل ویژگی­های خنک کنندگی، پهنه­های آب مانند یک فضای باز شهری بیشتر از دیگر عناصر، بر جزایر گرمایی شهری از طریق فرآیندهای تبخیر و انتقال حرارت تأثیر می­گذارند. تهران در سال­های اخیر به دلیل افزایش جمعیت با مشکلات گرمایشی شدیدی مواجه بوده است. احداث دریاچه چیتگر در تهران فرصتی قابل توجه برای بررسی اثرات خنک کنندگی آب و بهینه سازی ساختارهای شهری فراهم کرده است. در این تحقیق با نرم افزار انوی‌مت 4.4.5 بر اساس مطالعات انجام شده، 16 مدل ترکیبی برای مقایسه سناریوهای شهری بر اساس فرم و هندسه شهری با عوامل اقلیمی و شاخص آسایش حرارتی PET (دمای معادل فیزیولوژیک) طراحی شد. از نتایج به دست آمده مشخص شد که با احداث دریاچه چیتگر دمای محیط کاهش و رطوبت افزایش یافته است. شاخص آسایش حرارتی PET نشان داد که پس از احداث دریاچه چیتگر، آسایش حرارتی از شرایط بهتری برخوردار است. نتایج به‌دست‌آمده از سناریوی فرم شهری بهینه نشان داد که هر چه نسبت ارتفاع به عرض دره‌های شهری بیشتر باشد، شاخص دما و آسایش حرارتی کاهش، اما رطوبت افزایش می‌یابد. همچنین محل قرارگیری ساختمان­ها در جهت شمال شرقی به جنوب غربی کمترین درجه حرارت و آسایش حرارتی PET را دارد اما از رطوبت بیشتری برخوردار است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Cooling Effects of Urban Lakes on the Surrounding buildings ( Case Study: District 22 of Chitgar Lake, Tehran)

نویسندگان [English]

  • Farzaneh Amoozadeh 1
  • Sara Soleimani 2

1 Department of Architecture, Faculty of Art and Architecture, University of Kurdistan, Sanandaj, Iran.

2 Department of Architecture, Faculty of Art and Architecture, University of Kurdistan, Sanandaj, Iran.

چکیده [English]

Highlights

Urban designs that allow the incorporation of natural elements lead to improved environmental quality.
Deepening urban valleys facilitates greater wind flow from lake surfaces, enhancing cooling effects.
Reducing building surface coverage enhances airflow and improves thermal comfort.
Increasing building height and decreasing the surface coverage factor (SC) reduces temperature levels.

 
Introduction
Urban areas are responsible for two-thirds of the world’s primary energy consumption, which contributes significantly to urban heat islands (UHI) (Keirstead et al., 2012). UHIs are a major environmental issue, characterized by higher urban temperatures due to concentrated human activities. This study examines the cooling effects of Chitgar Lake on its surrounding urban area, aiming to mitigate future heating issues in Tehran by exploring how urban lakes can influence UHI. Specifically, it analyzes the role of urban geometric configurations in mitigating heat around lakes, which serve as urban open spaces.
Theoretical Framework
Urban planners utilize indicators like Floor Area Ratio (FAR), Surface Coverage (SC), and Building Height (H) to regulate urban forms. FAR relates to building volume, while SC denotes the proportion of built surfaces, indicating building permeability. Figure 1 illustrates the calculation of FAR and SC.
Figure 1: Illustration of Urban Planning Indicators - FAR and SC.
Among urban morphology elements, water bodies (e.g., rivers and lakes) significantly impact urban heat islands (Sarralde et al., 2015). The cooling effect of urban water bodies results from two main mechanisms: (a) evaporation, and (b) latent heat absorption, both of which lower surrounding temperatures compared to areas without water.
Methodology
This research compares two time periods—before and after the construction of Chitgar Lake—to assess the lake’s cooling effects on its surroundings. Two critical thermal conditions were selected from each period: one representing the environment after the lake’s construction and another before it. Meteorological data from these periods were analyzed, and simulations were conducted using the ENVI-met modeling software. The Physiological Equivalent Temperature (PET) was subsequently calculated with Biomet software (Wang et al., 2021).
Figure 2: Research Process Diagram (a) and Sample Model Descriptions (b).
Results and Discussion
Comparison of Conditions Pre- and Post-Lake Construction: Simulation data reveal a general temperature decrease in the area following Chitgar Lake’s construction. Model A, representing the current urban fabric, acts as a heat absorber. Although it generates a warmer atmosphere, the shadowed areas remain cooler, providing enhanced thermal comfort. In Model A, humidity intensifies during pre-dawn hours, gradually decreasing as sunlight increases.
Impact of Height-to-Width Ratio: Taller buildings deepen urban valleys (H/W > 1), casting longer shadows that lower temperatures and improve thermal comfort. However, these deep valleys tend to retain moisture due to limited sunlight and airflow. In contrast, shorter valleys (H/W < 1) permit more sunlight and airflow, leading to reduced humidity but higher temperatures, resulting in less favorable thermal comfort.
Comparison of Urban Form Layout: Analyzing the SB-1 and SB-2 models showed that increasing building height and reducing surface coverage (SC) lead to temperature reductions due to higher FAR (increased density). Larger cross-sectional areas hinder wind flow, retaining humidity in street valleys. The urban form model with the best thermal comfort index was CC-2, characterized by high humidity and optimal thermal conditions. Conversely, SB-1, with a high occupancy coefficient and high permeability, exhibited the most critical thermal state, acting as a heat absorber with elevated temperatures.
Conclusion
This study demonstrates that urban open spaces with natural cooling elements, such as water bodies, along with wind flow and shading, significantly improve thermal comfort during hot summer days. Models show that urban spaces allowing natural factors to penetrate are of higher quality. As building height increases and urban valleys deepen, extended shadows help lower temperatures and create areas with balanced thermal comfort. Streets oriented from northeast to southwest, and to a lesser degree east-west, experience the lowest temperatures while maintaining high humidity, which improves thermal comfort through lake-enhanced wind flow.
Additionally, denser urban street valleys with low permeability hinder wind flow, contributing to inadequate thermal comfort. This study found that modifying urban form, building orientation, and the height-to-width ratio can enhance urban valley permeability, reducing thermal pollution effects and lowering cooling energy demands.
 

کلیدواژه‌ها [English]

  •  Water Bodies
  • Physiological Equivalent Temperature (PET)
  • Urban Cooling Islands
  • Urban Heat Islands
  • Urban Morphology
  • ENVI-met
Allen-Dumas, Melissa R., Amy N. Rose, Joshua R. New, Olufemi A. Omitaomu, Jiangye Yuan, Marcia L. Branstetter, Linda M. Sylvester, Matthew B. Seals, Thomaz M. Carvalhaes, Mark B. Adams, Mahabir S. Bhandari, Som S. Shrestha, Jibonananda Sanyal, Anne S. Berres, Carl P. Kolosna, Katherine S. Fu, and Alexandra C. Kahl. 2020. “Impacts of the Morphology of New Neighborhoods on Microclimate and Building Energy.” Renewable and Sustainable Energy Reviews 133:110030. Doi: 10.1016/j.rser.2020.110030.
Bayat, J., S. H. Hashemi, M. Zolfagharian, A. Emam, and E. Z. Nooshabadi. 2019. “Water Quality Management of an Artificial Lake, Case Study: The Lake of the Martyrs of the Persian Gulf.” Sustainable and Safe Dams Around the World 1442–49. doi:10.1201/9780429319778-127. [in Persian]
Cheng, Lidan, Dongjie Guan, Lilei Zhou, Zulun Zhao, and Jian Zhou. 2019. “Urban Cooling Island Effect of Main River on a Landscape Scale in Chongqing, China.” Sustainable Cities and Society 47:101501. doi: 10.1016/J.SCS.2019.101501.
Da Silva, Fabiana Trindade, Neyval Costa Reis, Jane Meri Santos, Elisa Valentim Goulart, and Cristina Engel de Alvarez. 2022. “Influence of Urban Form on Air Quality: The Combined Effect of Block Typology and Urban Planning Indices on City Breathability.” Science of The Total Environment 814:152670. doi: 10.1016/J.SCITOTENV.2021.152670.
Du, Xiangyu, and Qiong Li. 2017. “The Effect of Pearl River on Summer Urban Thermal Environment of Guangzhou.” Pp. 1785–91 in Procedia Engineering. Vol. 205. Elsevier Ltd.
Gharagozlou, A., J. Nouri, and M. Hejrani Diarjan. N.d. “Environmental Impact Assessment of the Largest Man-Made Lake of Iran by Using Environmental Modeling and GIS / RS.” Environmental Health 1–8. [in Persian]
He, Xincheng, Weijun Gao, and Rui Wang. 2021. “Impact of Urban Morphology on the Microclimate around Elementary Schools: A Case Study from Japan.” Building and Environment 206:108383. doi: 10.1016/J.BUILDENV.2021.108383.
Jacobs, Cor, Lisette Klok, Michael Bruse, João Cortesão, Sanda Lenzholzer, and Jeroen Kluck. 2020. “Are Urban Water Bodies Really Cooling?” Urban Climate 32:100607. Doi: 10.1016/j.uclim.2020.100607.
Javanroodi, Kavan, and Vahid M. Nik. 2020. “Interactions between Extreme Climate and Urban Morphology: Investigating the Evolution of Extreme Wind Speeds from Mesoscale to Microscale.” Urban Climate 31:100544. Doi: 10.1016/j.uclim.2019.100544. [in Persian]
Leng, Hong, Xi Chen, Yanhong Ma, Nyuk Hien Wong, and Tingzhen Ming. 2020. “Urban Morphology and Building Heating Energy Consumption: Evidence from Harbin, a Severe Cold Region City.” Energy and Buildings 224:110143. doi: 10.1016/J.ENBUILD.2020.110143.
J. Sarralde, D.J. Quinn, D. Wiesmann, K. Steemers. Solar energy and urban morphology: scenarios for increasing the renewable energy potential of neighbourhoods in London. Renew Energy, 73 (2015), pp. 10-17, 10.1016/j.renene.2014.06.028.
Keirstead J, Jennings M, Sivakumar A. A review of urban energy system models: approaches, challenges and opportunities. Renew Sustain Energy Rev 2012;16: 3847–66. https://doi.org/10.1016/j.rser.2012.02.047.
Kolokotroni, M., X. Ren, M. Davies, and A. Mavrogianni. 2012. “London’s Urban Heat Island: Impact on Current and Future Energy Consumption in Office Buildings.” Energy and Buildings 47:302–11. Doi: 10.1016/j.enbuild.2011.12.019.
Kropf, Karl. The handbook of urban morphology. John Wiley & Sons, 2018.
Liu, Yan, Qi Li, Liu Yang, Kaikai Mu, Moyan Zhang, and Jiaping Liu. 2020. “Urban Heat Island Effects of Various Urban Morphologies under Regional Climate Conditions.” Science of the Total Environment 743:140589. Doi: 10.1016/j.scitotenv.2020.140589.
Li, Xiaoma, Yuyu Zhou, Sha Yu, Gensuo Jia, Huidong Li, and Wenliang Li. 2019. “Urban Heat Island Impacts on Building Energy Consumption: A Review of Approaches and Findings.” Energy 174:407–19. Doi: 10.1016/j.energy.2019.02.183.
Morini, Elena, Ali Gholizade Touchaei, Federico Rossi, Franco Cotana, and Hashem Akbari. 2018. “Evaluation of Albedo Enhancement to Mitigate Impacts of Urban Heat Island in Rome (Italy) Using WRF Meteorological Model.” Urban Climate 24:551–66. Doi: 10.1016/j.uclim.2017.08.001. [in Persian]
H. Wong, S.K. Jusuf, N.I. Syafii, Y. Chen, N. Hajadi, H. Sathyanarayanan, Y.V. Manickavasagam. Evaluation of the impact of the surrounding urban morphology on building energy consumption. Sol. Energy, 85 (1) (2011), pp. 57-71.
Ortiz Porangaba, Gislene Figueiredo, Danielle Cardozo Frasca Teixeira, Margarete Cristiane de Costa Trindade Amorim, Mauro Henrique Soares da Silva, and Vincent Dubreuil. 2021. “Modeling the Urban Heat Island at a Winter Event in Três Lagoas, Brazil.” Urban Climate 37:100853. Doi: 10.1016/j.uclim.2021.100853.
Oke TR. The Distinction between Canopy and Boundary Layer Urban Heat Islands. Atmosphere 1976;14(4):268–77.
Park, Chae Yeon, Dong Kun Lee, Takashi Asawa, Akinobu Murakami, Ho Gul Kim, Myung Kyoon Lee, and Ho Sang Lee. 2019. “Influence of Urban Form on the Cooling Effect of a Small Urban River.” Landscape and Urban Planning 183(November 2018):26–35. Doi: 10.1016/j.landurbplan.2018.10.022.
Palusci, Olga, Paolo Monti, Carlo Cecere, Hamid Montazeri, and Bert Blocken. 2022. “Impact of Morphological Parameters on Urban Ventilation in Compact Cities: The Case of the Tuscolano-Don Bosco District in Rome.” Science of The Total Environment 807:150490. doi: 10.1016/J.SCITOTENV.2021.150490.
Perera, A. T. D., Kavan Javanroodi, and Vahid M. Nik. 2021. “Climate Resilient Interconnected Infrastructure: Co-Optimization of Energy Systems and Urban Morphology.” Applied Energy 285:116430. Doi: 10.1016/j.apenergy.2020.116430. [in Persian]
Perrone D, Hornberger GM. Water, food, and energy security: scrambling for resources or solutions? Wiley Interdiscip Rev Water 2014;1:49–68. https://doi.org/ 10.1002/wat2.1004.
Ramyar, Reza, Esmaeil Zarghami, and Margaret Bryant. 2019. “Spatio-Temporal Planning of Urban Neighborhoods in the Context of Global Climate Change: Lessons for Urban Form Design in Tehran, Iran.” Sustainable Cities and Society 51:101554. doi: 10.1016/j.scs.2019.101554. [in Persian]
Ratti, Carlo, Nick Baker, and Koen Steemers. 2005. “Energy Consumption and Urban Texture.” Energy and Buildings 37(7):762–76. doi: 10.1016/J.ENBUILD.2004.10.010.
Ridha, S. (September 2017), ‘‘Urban Heat Island Mitigation Strategies in an Arid Climate: Outdoor Thermal Comfort Reachable”, Civil Engineering INSA de Toulouse.
Sedaghat, A., & Sharif, M. (2022). Mitigation of the impacts of heat islands on energy consumption in buildings: A case study of the city of Tehran, Iran. Sustainable Cities and Society, 76, 103435. https://doi.org/10.1016/J.SCS.2021.103435[in Persian]
Shareef, Sundus. 2021. “The Impact of Urban Morphology and Building’s Height Diversity on Energy Consumption at Urban Scale. The Case Study of Dubai.” Building and Environment 194:107675. Doi: 10.1016/j.buildenv.2021.107675.
Toja-Silva, Francisco, Antonio Colmenar-Santos, and Manuel Castro-Gil. 2013. “Urban Wind Energy Exploitation Systems: Behaviour under Multidirectional Flow Conditions – Opportunities and Challenges.” Renewable and Sustainable Energy Reviews 24:364–78.
Wang, Dongyang, Yurong Shi, Guanwen Chen, Liyue Zeng, Jian Hang, and Qun Wang. 2021. “Urban Thermal Environment and Surface Energy Balance in 3D High-Rise Compact Urban Models: Scaled Outdoor Experiments.” Building and Environment 205:108251. doi: 10.1016/J.BUILDENV.2021.108251.
Wang, Yasha, and Wanlu Ouyang. 2021. “Investigating the Heterogeneity of Water Cooling Effect for Cooler Cities.” Sustainable Cities and Society 75:103281. doi: 10.1016/J.SCS.2021.103281.
Zhou, Xuefan, and Hong Chen. 2018. “Impact of Urbanization-Related Land Use Land Cover Changes and Urban Morphology Changes on the Urban Heat Island Phenomenon.” Science of the Total Environment 635:1467–76. Doi: 10.1016/j.scitotenv.2018.04.091.