نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.

2 دانشیار، گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا ، همدان ، ایران.

چکیده

آسایش حرارتی به عنوان یکی از عوامل اساسی در حضورپذیری انسان‌ها در فضاهای شهری مطرح است. طراحی فضاهای باز شهری تحت تأثیر عناصر و عوامل مختلف می‌تواند باعث تغییر درکیفیت آسایش حرارتی استفاده کنندگان شود که در این پژوهش براساس ضرورت نقش دو مؤلفه الگوی هندسی و پوشش گیاهی در ارتباط با میزان آسایش حرارتی در فضاهای باز محلی در بافت قدیمی شهر همدان با اقلیم سرد و کوهستانی تبیین و تحلیل شده است. هدف از انجام پژوهش حاضر ارزیابی الگوی پوشش گیاهی و الگوی هندسه فضاهای باز محلی بر آسایش حرارتی در فصل زمستان در این بافت شهری است. در این راستا نُه مرکز محله تاریخی در شهر همدان به عنوان بستر تحلیل پژوهش در نظر گرفته شده که با استفاده از نرم افزار Envi-met، شبیه سازی و با ورود داده‌های اقلیمی و فضایی، تحلیل‌های مورد نظر انجام شده است. نتایج تحلیل نشان می‌دهد که در نظر گرفتن الگوی پوشش گیاهی و الگوی هندسی فضاهای باز به طور توأمان نقش مهمی در آسایش حرارتی در این اقلیم دارد. علاوه براین از میان متغیرهای محیطی آسایش حرارتی، سرعت باد بیشترین تأثیر را بر آسایش حرارتی در فصل زمستان داشته است. همچنین وجود پوشش‌های گیاهی برگ ریز ضمن آن که در تابستان با ایجاد سایه اندازی مناسب شرایط آسایش اقلیمی مناسبی را برای کاربران فراهم می‌نماید، در زمستان هم مانع تابش نور خورشید بر فضاهای باز گشته ( ضمن آن که در این گونه اقلیم‌ها شاهد وزش بادهای سرد و کمبود رطوبت به خصوص در ایام زمستان هستیم)، وجود این نوع الگوها و درختان باعث جذب رطوبت از زمین و انعکاس آن به محیط‌های اطراف می‌گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The impact of spatial pattern and local urban space vegetation on the thermal comfort in cold climate

نویسندگان [English]

  • Pegah Yadegari 1
  • hassan sajadzadeh 2

1 Department of Urban Planning, Faculty of Art & Architecture, University of Bu-ali Sina, Hamedan, Iran

2 Department of Urban Planning, Faculty of Art & Architecture, University of Bu-ali Sina, Hamedan, Iran

چکیده [English]

Highlights
The relative confinement of public open spaces of residential neighborhoods in cold climates plays an effective role in the thermal comfort of users.
Reducing wind speed plays a key role in increasing the thermal comfort of cold climates in winter.
Deciduous trees absorb sunlight during the day and reflect it to the environment in the evening and at night
 
Introduction
Because of the expansion of cities, it has become highly challenging to modify  urban structures to address the drawbacks of the planning and design of open spaces, control microclimates, and improve thermal comfort conditions. Due to their effect on the quality of air in cities, urban microclimates are highly significant, and since urban spaces play an important role in creation of urban microclimates, urban designers and planners have the capacity and means to reduce the negative effects of climate on citizens’ health through implementation of proper designs.
Theoretical Framework
Urban spaces affect their users’ thermal comfort via their design elements. Various parameters can induce micro-climatic changes, such as the geometric patterns, vegetation, natural elements, and construction materials of the open spaces. These elements also play important roles in balancing urban thermal comfort during winter. While the effects of vegetation and geometric patterns on thermal comfort in public open spaces during winter have been studied independently, the cumulative impact of vegetation and geometric parameters during winter in cold and dry climates has not been investigated sufficiently. This article sought to address this shortcoming.
Methodology
The ENVI-met software was used for simulation and comparison of the thermal comfort conditions of the open spaces selected for this study. First, the design parameters of the selected sites were determined via field measurement, and were entered into the software for simulation of the thermal environments. The four climatic parameters of thermal comfort were measured during winter using ENVI-met . Then, a receptor was placed at the center of each selected site for investigation of thermal comfort at the pedestrian scale. Using these receptors, the parameters of space design and their impacts on thermal comfort were studied during the selected season.
Results and Discussion
The changes recorded for wind speed were larger than those in MRT, air temperature, and RH; hence, the differences in thermal comfort at the central points. According to the results, the Kolapa and Kolanj neighborhoods exhibited more favorable thermal conditions due to their higher PET values. Both Kalpa and Kolanj neighborhoods had north-south orientation. This type of orientation provides top-down access to the sunlight during winter. The H/W ratios at the central receptors of the Kolanj and Kalpa neighborhoods were 0.6 and 0.3, respectively. These H/W ratios provided greater enclosure than those of the other neighborhoods. While a H/W ratio less than one can be said to be suitable for cold climates during winter, it can cause thermal discomfort against wind speed if it lies below a certain threshold. This condition was observed in the Kababiyan neighborhood, where the H/W ratio at the central point was 0.13. As a result, the residents have to take protective measures against the winter wind and storms. In addition, dense vegetation caused a decrease in the SVF of the neighborhoods. The neighborhood centers with vegetation exhibited higher MRT values as well. The trees also raised the RH values of the neighborhoods. Because of the dry climate of Hamadan, Iran, vegetation can certainly improve thermal comfort in this city.
Conclusion
Recent climate studies have explored thermal comfort as an important quality of urban spaces. While thermal comfort can be achieved through a decrease in temperature in hot climates (as emphasized by most studies), it requires an increase temperature to provide thermal comfort in cold and dry climates. The presence of Hamadan’s citizens in the urban open spaces of the city always decreases in the second half of the year because of the cold mountainous climate. Limitation in or even lack of thermal comfort is one of the most important reasons for this change. With their high standards of sociability, the centers of the historical neighborhoods of Hamadan have always served as places for social interaction between the residents of the city. Therefore, this study attempted to assess the thermal characteristics of nine neighborhood centers in Hamadan using the notion of thermal comfort and the relevant variables.
Acknowledgment
 This article has been extracted from a Master’s thesis in the field of Urban Design entitled Measurement and evaluation of thermal comfort in the centers of traditional neighborhoods with an emphasis on urban geometry and vegetation (historical neighborhoods of Hamadan), defended by the first author under the supervision of the second author at Bu-Ali Sina University.

کلیدواژه‌ها [English]

  • Thermal comfort
  • geometric pattern
  • vegetation
  • open public space
  • cold climate
Hamedan Province Road and Urban Development Organization (2018). Hamedan Comprehensive Plan Studies.
Afshar, N. K., et al. (2018). "Influence of planting designs on winter thermal comfort in an urban park." Journal of Environmental Engineering and Landscape Management 26(3): 232-240. https://doi.org/10.3846/jeelm.2018.5374
Al-Hemiddi, N. A. and K. A. M. Al-Saud (2001). "The effect of a ventilated interior courtyard on the thermal performance of a house in a hot–arid region." Renewable Energy 24(3-4): 581-595. https://doi.org/10.1016/S0960-1481(01)00045-3
Ali-Toudert, F. and H. Mayer (2006). "Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate." Building and Environment 41(2): 94-108. https://doi.org/10.1016/j.buildenv.2005.01.013
Ali-Toudert, F. and H. Mayer (2007). "Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons." Solar energy 81(6): 742-754. https://doi.org/10.1016/j.solener.2006.10.007
Andreou, E. and K. Axarli (2012). "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis." Renewable Energy 43: 354-363. https://doi.org/10.1016/j.renene.2011.11.038
ASHRAE, A. (2014). Standard 55-2013: “Thermal Environment Conditions for Human Occupancy”. Atlanta, GA, American Society of Heating, Ventilating and Air-Conditioning Engineers, Inc.
Barakat, A., et al. (2017). "Urban design in favor of human thermal comfort for hot arid climate using advanced simulation methods." Alexandria Engineering Journal 56(4): 533-543. https://doi.org/10.1016/j.aej.2017.04.008
Bouketta, S. and Y. Bouchahm (2020). "Numerical evaluation of urban geometry's control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate." Renewable Energy 146: 1062-1069. https://doi.org/10.1016/j.renene.2019.07.012
Bourbia, F. and F. Boucheriba (2010). "Impact of street design on urban microclimate for semi arid climate (Constantine)." Renewable Energy 35(2): 343-347. https://doi.org/10.1016/j.renene.2009.07.017
Bruse, M. (2006). ENVI-met 3–a three dimensional microclimate model. Ruhr University at Bochum, Geographischer Institut, Geomatik.
Chapman, D., et al. (2018). "Updating winter: The importance of climate-sensitive urban design for winter settlements." Arctic yearbook.
Chatzidimitriou, A. and S. Yannas (2015). "Microclimate development in open urban spaces: The influence of form and materials." Energy and buildings 108: 156-174. https://doi.org/10.1016/j.enbuild.2015.08.048
Chatzidimitriou, A. and S. Yannas (2016). "Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer." Sustainable Cities and Society 26: 27-47. https://doi.org/10.1016/j.scs.2016.05.004
Chen, L., et al. (2009). Sky view factor analysis of street canyons and its implication for urban heat Island Intensity. Proceedings of PLEA 2009 26th Conference on passive and low energy architecture, Citeseer.
Chen, X., et al. (2019). "Physiological and thermal response to real-life transient conditions during winter in severe cold area." Building and Environment 157: 284-296. https://doi.org/10.1016/j.buildenv.2019.04.004
DeKay, M. and G. Brown (2013). Sun, wind, and light: architectural design strategies, John Wiley & Sons.
Diebel, J. (2019). "Weatherspark.com." 2019, from https://weatherspark.com/y/104612/Average-Weather-in-Hamad%C4%81n-Iran-Year-Round.
Dursun, D. and M. Yavas (2015). "Climate-sensitive urban design in cold climate zone: the City of Erzurum, Turkey." International Review for Spatial Planning and Sustainable Development 3(1): 17-38. https://doi.org/10.14246/irspsd.3.1_17
Hamada, S. and T. Ohta (2010). "Seasonal variations in the cooling effect of urban green areas on surrounding urban areas." Urban forestry & urban greening 9(1): 15-24. https://doi.org/10.1016/j.ufug.2009.10.002
Jamei, E., et al. (2016). "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort." Renewable and Sustainable Energy Reviews 54: 1002-1017. https://doi.org/10.1016/j.rser.2015.10.104
Jim, C. Y. (2014). "Passive warming of indoor space induced by tropical green roof in winter." Energy 68: 272-282. https://doi.org/10.1016/j.energy.2014.02.105
Johansson, E. and R. Emmanuel (2006). "The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka." International journal of biometeorology 51(2): 119-133 https://doi.org/10.1007/s00484-006-0047-6.    
Lai, D., et al. (2020). Quantification of the influence of thermal comfort and life patterns on outdoor space activities. Building Simulation, Springer. https://doi.org/10.1007/s12273-019-0565-x
Lai, D., et al. (2019). "A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces." Science of The Total Environment 661: 337-353. https://doi.org/10.1016/j.scitotenv.2019.01.062
Lin, P., et al. (2017). "The impact of urban design descriptors on outdoor thermal environment: A literature review." Energies 10(12): 2151. https://doi.org/10.3390/en10122151
Lobaccaro, G. and J. A. Acero (2015). "Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons." Urban Climate 14: 251-267. https://doi.org/10.1016/j.uclim.2015.10.002
Matzarakis, A., et al. (2000). "Estimation and calculation of the mean radiant temperature within urban structures." WCASP-50, WMO/TD 1026: 273-278.
Morakinyo, T. E., et al. (2016). "Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university." Energy and buildings 130: 721-732. https://doi.org/10.1016/j.enbuild.2016.08.087
Oke, T. R. (1981). "Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations." Journal of climatology 1(3): 237-254. https://doi.org/10.1002/joc.3370010304
Oke, T. R. (1988). "Street design and urban canopy layer climate." Energy and buildings 11(1-3): 103-113 https://doi.org/10.1016/0378-7788(88)90026-6.
Organization, W. H. (2019). Global action plan on physical activity 2018-2030: more active people for a healthier world, World Health Organization.
Peng, Y., et al. (2019). "A path analysis of outdoor comfort in urban public spaces." Building and Environment 148: 459-467. https://doi.org/10.1016/j.buildenv.2018.11.023
Robitu, M., et al. (2006). "Modeling the influence of vegetation and water pond on urban microclimate." Solar energy 80(4): 435-447. https://doi.org/10.1016/j.solener.2005.06.015
Rosso, F., et al. (2018). "On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons." Renewable Energy 118: 825-839. https://doi.org/10.1016/j.renene.2017.11.074
Shashua-Bar, L. and M. E. Hoffman (2003). "Geometry and orientation aspects in passive cooling of canyon streets with trees." Energy and buildings 35(1): 61-68 https://doi.org/10.1016/S0378-7788(02)00080-4.
Shishegar, N. (2013). "Street design and urban microclimate: analyzing the effects of street geometryand orientation on airflow and solar access in urban canyons." Journal of clean energy technologies 1(1). 10.7763/JOCET.2013.V1.13
Szkordilisz, F. and A. Zöld (2016). Effect of vegetation on wind-comfort. Applied Mechanics and Materials, Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMM.824.811
Taleghani, M., et al. (2015). "Outdoor thermal comfort within five different urban forms in the Netherlands." Building and Environment 83: 65-78. https://doi.org/10.1016/j.buildenv.2014.03.014
Taleghani, M., et al. (2014). "Heat mitigation strategies in winter and summer: Field measurements in temperate climates." Building and Environment 81: 309-319. https://doi.org/10.1016/j.buildenv.2014.07.010
Van Esch, M., et al. (2012). "The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies." Energy and buildings 47: 189-200. https://doi.org/10.1016/j.enbuild.2011.11.042
Zheng, B., et al. (2018). "Combination of tree configuration with street configuration for thermal comfort optimization under extreme summer conditions in the urban center of Shantou City, China." Sustainability 10(11): 4192. https://doi.org/10.3390/su10114192
Zölch, T., et al. (2019). "Designing public squares with green infrastructure to optimize human thermal comfort." Building and Environment 149: 640-654. https://doi.org/10.1016/j.buildenv.2018.12.051